User Workflows
EdgeFirst Studio offers workflows tailored to your hardware and resources.
User Personas
The following diagram describes the workflow for identifying the user personas depending on the hardware requirements.
%%{init: {"flowchart": {"defaultRenderer": "elk"}} }%%
flowchart LR
%% User Definitions
user([User])
platform{Has a platform?}
edgefirst_platform{Has an EdgeFirst Platform?}
raivin_platform{Has a Raivin?}
record{Will use a smartphone to create a dataset?}
annotate_pd{Will explore annotating datasets?}
with_lidar{Has LiDAR integrated?}
tba[TBA]
tourist([Tourist]):::blue
tourist_plus([Tourist+]):::teal
web_user([Web]):::orange
maivin_user([Maivin]):::green
raivin_user([Raivin]):::purple
raivin_lidar_user([LiDAR]):::coral
classDef blue fill:#d0ecff,font-weight:bold;
classDef teal fill:#a2e8ed,font-weight:bold;
classDef orange fill:#ffd699,font-weight:bold;
classDef green fill:#a9e5bb,font-weight:bold;
classDef purple fill:#d6c1f5,font-weight:bold;
classDef coral fill:#ffc2b,font-weight:bold;
classDef all fill:#f0e6f5,font-weight:bold;
%% Flowchart
user --> platform
platform -- Yes --> edgefirst_platform
platform -- No --> record
record -- Yes --> web_user
record -- No --> annotate_pd
annotate_pd -- Yes --> tourist_plus
annotate_pd -- No --> tourist
edgefirst_platform -- Yes --> raivin_platform
edgefirst_platform -- No --> tba
raivin_platform -- Yes --> with_lidar
with_lidar -- Yes --> raivin_lidar_user
with_lidar -- No --> raivin_user
raivin_platform -- No --> maivin_user
PC Requirement
It is expected that for all personas identified above, the user has a PC with Wifi access.
We've identified six workflows: Tourist, Tourist+, Web, Maivin, Raivin, LiDAR. The hardware requirements and the available features increases starting with the Tourist as the most basic.
| Persona | Hardware | Features | Cost |
|---|---|---|---|
| Tourist | PC | Train, Validate, Deploy Offline | TBA |
| Tourist+ | PC | Annotate 2D, Train, Validate, Deploy Offline | TBA |
| Web | PC + Smartphone | Record, Annotate 2D, Train, Validate, Deploy Offline | TBA |
| Maivin | PC + Maivin | Record, Annotate 2D, Train, Validate, Deploy on Device | TBA |
| Raivin (coming soon) | PC + Raivin w/ Radar | Record, Annotate 2D + 3D, Train, Validate, Deploy on Device | TBA |
| LiDAR (coming soon) | PC + Raivin w/ LiDAR | Record, Annotate 2D + 3D (enhanced), Train, Validate, Deploy on Device | TBA |
User Journey
The following diagram describes the workflows for each user persona identified above.
%%{init: {"flowchart": {"defaultRenderer": "elk"}} }%%
%%{init: {"themeVariables": { "fontSize": "40px" }}}%%
flowchart LR
%% User Definitions
tourist([Tourist]):::blue
tourist_plus([Tourist+]):::teal
web_user([Web]):::orange
maivin_user([Maivin]):::green
raivin_user([Raivin]):::purple
raivin_lidar_user([LiDAR]):::coral
classDef blue fill:#d0ecff,font-weight:bold;
classDef teal fill:#a2e8ed,font-weight:bold;
classDef orange fill:#ffd699,font-weight:bold;
classDef green fill:#a9e5bb,font-weight:bold;
classDef purple fill:#d6c1f5,font-weight:bold;
classDef coral fill:#ffc2b,font-weight:bold;
classDef all fill:#f0e6f5,font-weight:bold;
%% Hardware Definitions
raivin_lidar_hardware[Raivin + LiDAR Quickstart]
raivin_hardware[Raivin Quickstart]
maivin_hardware[Maivin Quickstart]
%% Dataset Definitions
record_mcap[Record MCAP]
capture[Take video/images from smartphone]
snapshot[Create and restore snapshot]
copy_dataset[Copy public dataset]
audit_3d[Auto Annotate 3D]
audit_2d[Auto Annotate 2D]
%% Model Definitions [train, validate, deploy 2D and 3D]
train_2d[Train Vision Model]
validate_2d[Validate Vision Model]
jupyter_2d[Deploy Vision Model on the PC]
maivin_2d[Deploy Vision Model on the Maivin]
train_3d[Train Fusion Model]
validate_3d[Validate Fusion Model]
raivin_3d[Deploy Fusion Model on the Raivin]
%% Flowchart Starting Points
raivin_lidar_user --> raivin_lidar_hardware --> record_mcap
raivin_user --> raivin_hardware --> record_mcap
maivin_user --> maivin_hardware --> record_mcap
web_user --> capture
tourist_plus --> copy_dataset
tourist --> copy_dataset
%% Flowchart Dataset Processes
record_mcap --> snapshot
snapshot --> audit_2d --> train_2d
snapshot --Raivin/LiDAR Only--> audit_3d --> train_3d
capture --> audit_2d
copy_dataset --Tourist+ Only--> audit_2d
copy_dataset --Tourist Only--> train_2d
%% Flowchart Model Processes
train_2d --> validate_2d
validate_2d --> jupyter_2d
validate_2d --Maivin/Raivin/LiDAR Only--> maivin_2d
train_3d --> validate_3d --> raivin_3d
%% linkStyle 0 stroke:#ff6f61
%% linkStyle 1 stroke:#ff6f61
Note
Labeled arrows suggests that only certain type of users can enter the stages pointed by the arrow. For example, only Raivin and LiDAR users can "Auto Annotate 3D".
-
This workflow is intended for users with a personal computer with access to Wifi that want to use the sample datasets available for training, validating, and deploying Vision models.
-
This workflow is intended for users with a personal computer with access to Wifi that want to use the same datasets available for annotating, training, validating, and deploying Vision models.
-
This workflow is intended for users with a personal computer and a device with a camera with access to Wifi and a web browser. The examples shown in this workflow will be from a Windows computer and an Android phone for recording images. Proceed to this workflow to see capturing and annotating datasets that will be used to train, validate, and deploy Vision models.
-
This workflow is intended for users with a personal computer with access to Wifi and a web browser and a Maivin platform. To proceed to this workflow, click on the link above.
Future Work
The Raivin and LiDAR workflows are currently unavailable.