EdgeFirst Messages
Box
center_x
class-attribute
instance-attribute
center_x: float32 = 0
Normalized x-coordinate of the center
center_y
class-attribute
instance-attribute
center_y: float32 = 0
Normalized y-coordinate of the center
distance
class-attribute
instance-attribute
distance: float32 = 0
Distance of object (if known)
height
class-attribute
instance-attribute
height: float32 = 0
Normalized height of the box
label
class-attribute
instance-attribute
label: str = ''
object label
score
class-attribute
instance-attribute
score: float32 = 0
confidence score for detection
speed
class-attribute
instance-attribute
speed: float32 = 0
Speed of object (if known)
track
class-attribute
instance-attribute
track: Track = default_field(Track)
object tracking, each track includes ID and lifetime information
width
class-attribute
instance-attribute
width: float32 = 0
Normalized width of the box
Detect
boxes
class-attribute
instance-attribute
boxes: sequence[Box] = default_field([])
Array of detected object bounding boxes
header
class-attribute
instance-attribute
header: Header = default_field(Header)
Metadata including timestamp and coordinate frame
input_timestamp
class-attribute
instance-attribute
input_timestamp: Time = default_field(Time)
Timestamp of the input data (e.g., from camera)
model_time
class-attribute
instance-attribute
model_time: Time = default_field(Time)
Timestamp when the object was processed by the model
output_time
class-attribute
instance-attribute
output_time: Time = default_field(Time)
Timestamp when the processed output was available
DmaBuffer
fd
class-attribute
instance-attribute
fd: int32 = 0
The file descriptor of the DMA buffer
fourcc
class-attribute
instance-attribute
fourcc: uint32 = 0
The fourcc code of the image
header
class-attribute
instance-attribute
header: Header = default_field(Header)
Metadata including timestamp and coordinate frame
height
class-attribute
instance-attribute
height: uint32 = 0
The height of the image in pixels
length
class-attribute
instance-attribute
length: uint32 = 0
The length of the DMA buffer in bytes, used to mmap the buffer
pid
class-attribute
instance-attribute
pid: uint32 = 0
The process id of the service that created the DMA buffer
stride
class-attribute
instance-attribute
stride: uint32 = 0
The stride of the image in bytes
width
class-attribute
instance-attribute
width: uint32 = 0
The width of the image in pixels
Mask
encoding
class-attribute
instance-attribute
encoding: str = ''
The optional encoding for the mask (currently unused).
height
class-attribute
instance-attribute
height: uint32 = 0
The height of the mask, 0 if this dimension is unused.
length
class-attribute
instance-attribute
length: uint32 = 0
The length of the mask, 0 if this dimension is unused. The length would be used in 3D masks to represent the depth. It could also be used for 2D bird's eye view masks along with width instead of height (elevation).
mask
class-attribute
instance-attribute
mask: sequence[uint8] = default_field([])
The segmentation mask data. The array should be reshaped according to the height, width, and length dimensions. The dimension order is row-major.
width
class-attribute
instance-attribute
width: uint32 = 0
The width of the mask, 0 if this dimension is unused.
Model
boxes
class-attribute
instance-attribute
boxes: sequence[Box] = default_field([])
Array of detected object bounding boxes.
decode_time
class-attribute
instance-attribute
decode_time: Duration = Duration()
Duration to decode the outputs from the model, including nms and tracking.
header
class-attribute
instance-attribute
header: Header = Header()
Metadata including timestamp and coordinate frame
input_time
class-attribute
instance-attribute
input_time: Duration = Duration()
Duration to load inputs into the model
mask
class-attribute
instance-attribute
mask: sequence[Mask] = default_field([])
Segmentation masks from the model. Empty array if model does not generate masks. Generally models will only generate a single mask if they do.
model_time
class-attribute
instance-attribute
model_time: Duration = Duration()
Duration to run the model, not including input/output/decoding
output_time
class-attribute
instance-attribute
output_time: Duration = Duration()
Duration to read outputs from the model
RadarCube
The RadarCube interface carries various radar cube reprensentations of the Radar FFT before generally being processed by CFAR into a point cloud. The cube coud be R, RD, RAD, RA, and so on where R=Range, D=Dopper, and A=Azimuth.
Dimensional labels are used to describe the radar cube layout. Not all cubes include every label. Undefined is used for dimensions not covered by this list.
cube
class-attribute
instance-attribute
cube: sequence[int16] = default_field([])
The radar cube data as 16bit integers. If the is_complex is true then each element will be pairs of integers with the first being real and the second being imaginary.
header
class-attribute
instance-attribute
header: Header = default_field(Header)
Message header containing the timestamp and frame id.
is_complex
class-attribute
instance-attribute
is_complex: bool = False
True if the radar cube is complex in which case the final dimension will be doubled in size to account for the pair of int16 elements representing [real,imaginary].
layout
class-attribute
instance-attribute
layout: sequence[uint8] = default_field([])
Radar cube layout provides labels for each dimensions
scales
class-attribute
instance-attribute
scales: sequence[float32] = default_field([])
The scaling factors for the dimensions representing bins. For dimensions taken "as-is" the scale will be 1.0.
shape
class-attribute
instance-attribute
shape: sequence[uint16] = default_field([])
Radar cube shape provides the shape of each dimensions
timestamp
class-attribute
instance-attribute
timestamp: uint64 = 0
Radar frame timestamp generated on the radar module
RadarInfo
The RadarInfo interface carries the current radar configuration and status.
center_frequency
class-attribute
instance-attribute
center_frequency: str = ''
Radar center frequency band.
cube
class-attribute
instance-attribute
cube: bool = False
True if the radar is configured to output radar cubes.
detection_sensitivity
class-attribute
instance-attribute
detection_sensitivity: str = ''
The detection sensitivity controls the sensitivity to recognize a target.
frequency_sweep
class-attribute
instance-attribute
frequency_sweep: str = ''
The frequency sweep controls the detection range of the radar.
header
class-attribute
instance-attribute
header: Header = Header()
Message header containing the timestamp and frame id.
range_toggle
class-attribute
instance-attribute
range_toggle: str = ''
The range-toggle mode allows the radar to alternate between various frequency sweep configurations. Applications must handle range toggling as targets are not consistent between messages as the frequency alternates.
Track
created
class-attribute
instance-attribute
created: Time = default_field(Time)
Time the track was first added
id
class-attribute
instance-attribute
id: str = ''
Unique identifier for the object track, empty if the object is not tracked.
lifetime
class-attribute
instance-attribute
lifetime: int32 = 0
Number of consecutive frames the object has been tracked